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The problem of controlling a stochastic system subject to the criterion that a generalized performance functional should be a 
minimum [1] is coragidered. A method is p ~  for solving the problem, based on an optimal control algorithm with a p ix)g lg l~  
model [1] and on the method of integral support curves for solving the Cauchy problem for ordinary differential equations [2-4]. 
The controls are synthesized in analytic form. Copyright O 1996 ELsevier Science Ltd. 

1. G E N E R A L  F O R M U L A T I O N  OF THE PROBLEM 

There are two formulations of the problem of analytical design, due respectively to Letov-Kalman [5] 
and Krasovskii [1]. We will consider Krasovskii's formulation as it applies to the stochastic system 

~+ f (y , t  ) = ¢#(y, t )u + ¥ ( y ,  t )n t 

y ( t , y o ) = y  o, y e Y c R  t, te[ to, tM] 

(1.1) 

where the functions fly, t), qffy, t), W(Y, t) are such that the existence and uniqueness conditions for 
solutions of Eq. (1.1) are satisfied. In addition, fly, t) satisfies a Lipschitz condition in y with Lipschitz 
constant L,  nl( t )  ~ R t is white Gaussian noise with mathematical expectation M(nl)  =- 0 and variance 
M(nl( t*)nl( t**))  = Sl(t*)8(t* - t**), Sl( t)  is the spectral density of the noise, 5(.) is the delta function, 
u(t) ~ U C R 1 is a control that minimizes the mathematical expectation of a given generalized perfor- 
mance functional [1] 

t 2 + 2  
M(J)= M(V3[y(fu,yo)]+ ~Q[y(t,yo),fldf + l t !  U k~2~P t) 

t(} 
(1.2) 

I/'3('), Q(.) are given positive-definite functions and uov is the optimal control for system (1.1). 
We shall consider the use of the prognosing-model method [1] to seek optimal controls of the scalar 

object (1.1), i.e. controls that minimize the generalized performance functional (1.2). The results will 
be extended to the multidimensional case later. 

Suppose the observation equation is 

Z = h(y,t)+ n 2 (1.3) 

where the function h(y, t) is assumed to be jointly continuous in both arguments, and n2(t ) ~ R 1 is the 
interference of the observation, which is Gaussian white noise with mathematical expectation M(n2) = 
0 and variance M(n2(t*)n2(t**)) = S2(t*)~(t* - t**). 

According to the separation principle [1] for the observation (1.3), if the estimation of the state of 
system (1.1) is sufficiently accurate in the sense of minimum root mean square error, the controls 

u( t, yo ) = -k 2~p(y ,t )igV ( y,t )13yly=~(t.y,,) (1.4) 

will be optimal in the sense of minimizing the functional (1.2), where the function V(y, t) satisfies the 
equation 
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OV l ~ t -  f ( y , t ) ~ V  l ~y = - Q ( y , t )  

subject to the boundary condition (VO', tM) = V3(Y). 

According to the algorithm of optimal control with a prognosing model [1], the optimization interval 

[to, tM] is divided into sufficiently short cycles 6tin + 1 = tm + l - t~ (m = O, M - 1), in such a way that 
for each fixed t = t s  we have the equality 

Xm=Y ~, m = 0 , M - I  (1.5) 

which determines the initial data tin, xm necessary to solve the equation of free motion 

R+f (x , t )=O,  x ~ X c R  l, te[tm,tM] (1.6) 

wherex( t ,  Xm) = ~(t, tm, Xm) is the solution of Eq. (1.6) corresponding to the initial data t~,Xm and$m 
is an estimate of the state of system (1.1), supplied to the control system according to the results of the 
observation at time t = tin. 

Taking (1.4) and (1.5) into consideration, we have the following estimate at the ruth step 

u'm+ I = -k2q~(y,n, t m ) o V ( x ,  t )  I Ox]x=y. " , U-m+ j = ~( t ,  Ym ) ( 1 . 7 )  
t = t  m 

The function V(x, t) is specified in the form [1] 

V[x(t,  ym),t ] = V3Ix(tM,ym)]+t~Q[x(t,Ym),t]dt, t ~ [tm,t M ] 
t 

(1.8) 

As can be seen from (1.7), in order to determine an optimal control f4~+1 at the mth step (m = 0, 1, 
. . . ,  m - 1) using a prognosing model, one must evaluate the partial derivative 3V/Ox at the point x = 
Ym, t = tin. In practice this is done numerically, requiring a large number of "runs" of the model (1.6) 
during each cycle At, n+i [1]. 

To construct an approximate solution of the equation of free motion (1.6), one can use the method 
of integral support curves (ISC) of the solution of the Cauchy problem for ordinary differential equations 
[2--4]. The advantage of that method over the traditional approach is that it enables one to represent 
the initial equation as an array of data, from which an approximate solution of the equation may be 
obtained in analytic form with a given accuracy, i.e. 

Ix( t ,x  m ) -  x( t ,x m )l~ < ~:0, Xm ~ X, t ~ [ t m ,t M ] (1.9) 

where:?(t, xm) is an approximate solution of Eq. (1.6) constructed using the ISC method for initial data 
Xm, tm and e0 is the maximum admissible error in the integration of Eq. (1.6). Obviously, when this method 
is used the expression for the suboptimal control (1.7) may be obtained in analytic form. 

In accordance with the ISC method [2], besides the mesh tm (m = 0, 1 , . . . ,  M), we also introduce a 
mesh t()k (k =. 0, . . . . 1 ,  , K), with., the stipulation. [to, tM] ~ [t(0,) (t t0]- In a special case, the meshpoints, t,, 
and t~ may coincide. In. addition, for the variable, x(0) = x(t(o).) we introduce, a mesh. x(o)i (t = O, 1, . . .  , 
/)  which, by analogy with [3], enables us to consider the famdy of particular solutions x(t, X(o) = X(o)i) 
of Eq. (1.6) corresponding to a sequence of different initial data X(o)i (i = O, 1, . . . .  I) 

x(t, Xto) = Xto~)=~(t,t(o),Xto)i), x(tto),X(o) = Xto~)= Xto~ (Xto~i-Xfo).i_i =Axco)i) (1.10) 

Following the analogy with [2], we shall call this family the family of ISCs determined for the set of 
meshpoints tk (k = 0, 1 . . . . .  K) and X(o)i (i = 0, 1 . . . . .  /)  by the sequence of fixed values 

x(ttk), X(o) = Xto)~ ) = ~(ttk ), tto), X(o), ) = x(k)~ (1.11) 

We shall also assume that, as applied to (1.6), one can obtain data arraysX ~u) = {Xo (~0 . . . . .  XI (~0} 
and Id'vl = {Y0 [M, ,Yk[~q, whereX i  tM)= (x 0") k = O , K , j = O ,  M k - 1 }  ( i = O , l ) , Y k  [Aq = {x[~/, i = . . . .  (k~' 
O, L , l = O, Ni - 1 }  (k = 0, K ) . H e r e  



Synthesis of suboptimal control of stochastic systems using a prognosing model 553 

x(,~. = ~ x(t,X(o )) I ~ t0~l t=~(,) x(j) _ ~ J x ( t , X ( o ) ) l ~ t J l ~ , ~  It] t x t " (*)i -- 
x(o)=X(O)i x(t))=x(o}/ 

Using the algorithm of optimal control with prognosing model (1.1)-(1.8) and the method of ISCs 
of the Cauchy problem [2-4], it is required to develop a new approach to the computation of approximate 
(suboptimal) controls ~,,+~ (m = O, 1 , . . . ,  M -  1); this approach should enable us to form an analytic 
expression for the control at the preliminary synthesis stage, and should guarantee that, if the integration 
meshpoints in the ISC method are chosen in the optimal way, then 

l~m+ l-u,,+~l~ < t~. m=O.M-I (1.12) 

where ~m+l is a control of system (1.1) that is exact (optimal) in the sense of minimizing the functional 
(1.2), and el is the maximal admissible error in computing the control inputs. 

2. CONSTRUCTION OF A SOLUTION OF THE EQUATION 
OF FREE MOTION 

• x0") Construct ion o f  a so lu twn  based on  (k)i 
We will represent the exact solution of the Cauchy problem for Eq. (1.6) in the domain X × [to, tM], 

for initial data x(0) a:ad t(0), in the form 

x( t ,X(o )  ) = l~( t , t (o) ,X(o))  , x ( t (o ) ,X(o) )  = X(o ), X(o ) e X(o ) c X (2.1) 

To construct an an;dytic solution of Eq. (1.6) for the problem in question, we shall assume that the quanti- 
ties x~w which may be calculated by numerical-analytical operations, are known. Thus, the first and second 
derivt~ives with restmct to time, x~)~ and x~2)~, respectively, may be computed from the formulae 

x0) ,.(2) (,)i = f(x¢*)i,t(*)), ^(,)i = fO)(x,t)lt=t(,~ + f (x¢,~ ,t¢,) )flq (x,t)l,=,~,~ 
X=X(k)i x=X(k)i 

To .~)proximate a. solution of Eq. (1.6), by analogy with [4], we interpolate a sample of numerical 
data X (q)/ (q = 0, K , p  = 0--~q-: 1) corresponding to the ith ISC (i = 0, 1 , . . . ,  1) 

- (M) _ tp) ts¢) (2.2) x( t ,X(o~,X ~ )-Eotq~(X~ )~,qp(t) 
q.P 

where 
- (M) ~ ' ~ , v ( p ) t y ( M ) , v u ( j ) t t  ,~_ v ( j )  
X(t(k),X(o)i ,Xi  )= /...,"~qi ~"'i Jlqp~'(k).~--"(q)i 

q.P 
(2.3) 

(J) - J J j = 0 , M , - I ,  k = O , K  Yqr (t(,)) - d y~p ( t)  I dt It=t<,), 

The coefficients ¢x~)(X~, ~o) are found by solving the system of linear algebraic equations (2.3). 
Fixing k = 0, 1 , . . . ,  K andj = 0, 1 , . . . ,  Mk-1, we associate with the meshpoints x(0)i (i = 0, 1 , . . . ,  

1) the sequence of values o~)(Xi  (vO) and interpolate 

ct(j) ~ v(M) ~ _ x" a~J) ~ y(M) (2.4) , ~,- J-z.,v,, ~-- )Ix,(X(o)) 
r 

(summation from r = 0 to r =/). Here 

(j) (M) ,.,(j): s:~U) ~ (2.5) ~-~kr  ( X  )~[r(a(O)i)~-,.~ki i .~  i , 
r 

The coefficients 30~ (X fM)) are found by solving the system of equations (2.5). 
Thus, by (2.2)-(7:.5), the approximate solution ~(t, x(0), X (sO) can be represented in the form 

(p) (u) (p) (M) (2.6) = I~, (X )~t,(X(o~)Yqr(t) j ( t , X ( o ) , X ( M ) )  = ~ a q  (X(o) ,X  ) yqp ( l )  ~,  
q.p q.p.r 
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(p) (M) ( j)  y( j )  
~qr ( X  )~l.,(X(o)i)¥qp(t(k))=.~(k)i q.p,r 

If the construction of the ISCs (2.2) utiliTes the Hermite interpolation formula, it is natural to put 
= = Then expr ion (2.2) becomes 

I ](d) 
~(t,X(O)i,X~ M)) (P) ~.(p) L I ( l- l(q)) Mq ~x(t) = ~X(q)iHqp(f)= "( q )i q,p q.p,d q! P!L ~"~'~ ( t-- t(q))Mq-p-d 

~/¢  (t)  = (t  - t(o ) )uo (t - to) )Ul... (t-- t(r ) )Mr 

(2.7) 

(summation over d from d = 0 to d = Mq - p  - 1). 
Using the Lagrange polynomial Lr(x(o)) in interpolation (2.4), we obtain 

(j) (M) (j) (j) (°t  (X(o)) 

tot (X(o)) = (X(o) - X(o)o )(X(o) - X(o)i )... (X(o) - X(o)t ) 

to~l) ( Xto, ) = dto t ( X(o) ) i dxto ) 

(2.8) 

Thus, taking (2.7) and (2.8) into consideration, we can write the solution (2.6) as 

£(t,X(o ),X (M)) = T.(X(o ),t,X (M)) (2.9) 

x (p) L " x -  Y ' (x ' t 'X (U) )= ~" (v), r ( ) t l q p ( t )  
q,p,r 

10 Conamct ion  o f  a solution based on x(k)i 
In accordance with the formulation of the problem, when constructing a solution of Eq. (1.7) based 

on the data ~¢1 we shall assume that the quanfifies~)i are known; they may be calculated by a numerical- 
analytic approach based on the use of successive approximations. To do this, we differentiate the following 
obvious expression as many times as necessary with respect to x(0) (over the interval It(0), t]) 

x(t, X(o ) ) = f f(x,~(x,t(o ), X(o ) ))a~: + X(o ) 

For example, the first and second derivatives are evaluated by the formulae 

xtlJ(t, X(o )) = J" xtq (x, X(o ))f[mj(x, x)dx + ! 

xl2l(t, X<o) ) = f {[xlll(x ' X(o))]2 f l21(x ' x) + xl2](x, x(o ) ) f l j l (x ,  t)}dx 

Taking the data array (1.11) into consideration, the algorithm for computing x/~l)i and x/~/)i reduces 
to the following procedures 

It] [ll 111 x~ (t, x(0~ ) = J'x~_~ (~, X(o ~ ) f  (x, x(x, x(0~ ))dx + i, 

x [ l ] _  ltl (,~ - x~  (t(k),X(o~ ) 

xtn 21 (t,x(0 ~ ) = I {[x~ ] (Z,X(o)i)12 f l2 l (x ,  x(X, X(o)~ )) + 

(2.10) 

{21 [I] +Xn_I('C,Xto~)f (Z,x(Z,Xto)i))}d't, n =  1,(22 (2.11) 

xt2} [2] (,~ = xo~ (tt,),X(o~) 
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These formulae are modifications of the well-known method  of successive approximations, applied 
to the ease in which one has highly accurate data on the family of ISCs;Similarly, successive differenti- 
ation with respect to x(0) yields appropriate formulae for derivatives xa~)i of higher orders. 

Another  approach to the computation ofxl(qk) i is based on using Lindel6f's theorem, according to which 
the algorithm for computing, say, xi(~i reduces to the rule 

x01 = exp{~ f , I  (~, x(x, x(0 ) ))dr} (2.12) ( ~  

[ql Let  us interpolate the sample of numerical data xck)p (p = 0--~, q = 0, ICe - 1), for a fixed k = 0, 1, 
. . . ~ g  

in which ease 

v[N] )  -- [ql NI i(t(k),X(o),,k .-Eakp(~ )g~(X(o)) (2.13) 
P# 

where 

. • [ 1 1 1 ,  ,, VIN]~ _ X" ~ [ q I f v [ N I  _ X[II ~ l l l (  ~ v(k),~'(O)i,,k ,-- z . , -~  ~'k , ~ , X ( o ) i , -  (k)i 
P.q 

(2.14) 

Ill X _ I ~tt, q( (o)i)-d tlt~(X~o))l dtx~o)l~qo~=x~o~, i = 0 , N  i - I  

The  coefficients o ' I~(yl~) are found by solving the system of equations (2.14). 
Fixing i = 0, 1 . . . .  , I and 1 = 0, I . . . . .  Ni - 1, we can associate with the meshpoints t(k) (k = 0, 1, 

. . . ,  K) the set of values a[q~(Yl~ q) and interpolate 

Ill IN] _ {t] IN] 
U i ( Y  ) -  ~" Ori ( Y ) ~ r ( t )  (2.15) 

r 

The coefficients ~i~ (yI/Vl) are found by solving the system of equations 

Ill [N] _ [/1 IN] ~I~,~(Y )¥ , ( t tk ) ) -a~( r~  ) (2.16) 

(summation over r from • = 0 to r = K). 
Thus, in view of (2.13)-(2.16), the approximate solution ~(t, x(0), yIn]) may be written in the form 

~(t. x(0 ), ytN] ) = y.a~l  (t. ytN] )Ix ~ (x(0)) = Y. 13~ 1 (YtNJ)Ixt, q (x(0))7, (t) (2.17) 
q,p q.p,r 

where 

[ql [Jr] It] it] ~J~ (Y )~m(X(o)i)yr(t(~)) = x(k ~ (2.18) 
q,p.r 

If one usescc~ Hermite 's  formulae for the interpolation (2.13) and a Lagrange polynomial (~ (x (00  = 
H~(x(0)) , = x[~!()v -' 7,(0 = L~(t)) for the interpolation (2.15), the approximate solution (2.~). ~ e s  
the form 

.~(t, xt0), ytN] ) = y.(X(o),t ' lain) 

E(x,t, rtm)= E tql xt,)pH ~ (x)L,(t)  
q.p.r 

(2.19) 

3. S Y N T H E S I S  OF S U B O P T I M A L  C O N T R O L  

Let us assume that the functions V3(x) and Q(x, t) are given quadratic forms, as is frequently the case 
in practice [1, 5]: l/3(x ) = ~c2/2, Q(x, t) = q(t)x2/2. 

In that case, using (1.8), we can write (integration over the interval [tin, tM]) 

~-~x t..t. =u X(t M,ym ) + S )dr q(t)x(t,~m (3.1) 
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where x(t, ym) = ~(t, tm, Ym) is the solution of Eq. (1.6) for initial data tm, f'm. 
Taking the last relationship into consideration, as well as (1.7), we obtain the control 

U'-m+ I ---- -k 2{p(ym ,tm ){I/X(tM, Ym )+ ~q(t)xft, Ym )dt} (3.2) 

Replacing the exact solution x(t, Ym) in formula (3.2) by the approximate solution £(t, v,,) as given 
by (2.9), we find that the required suboptimal control may be written as 

us,+ I -- -k21p(y,,, t m ){u E(Ym, tM, x(M)) + jq(t)~'-(Ym, t, X (M))tit} (3.3) 

When the approximate solution.f(t,)Sm, yiNl~ is used, the expression for the control differs from (3.3) 
only in the replacement of the term Y-~m, t, X Iul) by a term Y-~m, t, I AMI) as given by (2.19). 

Hence, based on th~.~¢it ic  form of the equation of free motion (1.6), one can select either of the 
two solutions to the pri~Olgm of the analytic design of control systems. In practical applications, priority 
should be given to that ~lu~ion which, while guaranteeing the prescribed accuracy for the synthesis 
of suboptimal controls, rvquires a smaller amount of a priori data about the family of ISCs. In other 
words, the decision as to which construction to choose should be based on an examination of the 
inequalities 

Note that in order to construct suboptimal controls of type (3.3) one can use not only Lagrange and 
l-Iermite polynomials, but also other interpolation structures, which may be more convenient f~om the 
standpoint of computer ~hp.lementation. 

With the controls detetmlined above, the induced motion of system (1.1) at the mth step (m = 0, 1, 
. . . .  M - 1) will obey the law 

"~+ f(Y,t)-IP(Y,t)um+ I 

~(t.Ym) = Ym, t¢[tm,tm+l] 

4. SELECTION OF INTERPOLATION POINTS 

Let us consider the solution of our problem as it applies to the case in which only the array of numbers 
(1.11) is used to construct an approximate solution £(t, x(0)) = £(t, x(0), X (°) = ~(t, x(0), I '4°1) of Eq. (1.6). 
It is obvious that the true integral curvex(t,X(o)i) differs from the approximate curve~(t,X(o)i) at t = tk 
by an amount Ax(k)/= :~(t(k), x(0)/) -x(t(k),X(o)i) (i ¢t O, I). In view of (1.9), let us assume that £'(t,x(0)) is 
an e-approximation in the sense of the mismatch in the solution, i.e. I ~(t, X(o)) - x(t(o)) - x(t~ x(0)) I ~< 
e, and when the function £'(t, x(0)) is substituted into (1.6) we obtain 

~+ f (~ , t )  = ¥( t )  

where the mismatch ¥(t) satisfies the inequality 

maxl¥(t)l• e 
t 

We then obtain the following estimate [2] for the two continuously differentiable solutions x(t, X(o)) 
and£(t, x0) 

p[(X(t, Xco )), Yc(t, Xco ))] ffi S exp[ L(t - tfo ))] + L {exp[L(t - t~o ))] - I} 

• e{exp[L(t~x 3 - t ,o ) )+l[exp[L( too- t fo ) ) ] - l ]}  

It is well known that the error in two-dimensional interpolation is the remainder term 
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(!?, 
( K + D .  a t  

~l+l * ~K+I+2 
+ co~ (X<o)) ~xcT~ ~(t,t~o), X<o) ) -  co x (t) co~ (X(o)) ~(t" ,t(o), x~'o)) 

(I+1)! (K+ 1)! (I+1)! ot"x+l"OX¢o )t+~ 

where t*, t** and x~0), x~03 are oertain characteristic values of the variables t and x(0 ). 
In view of (4.1), the following inequality may be used when the family of ISCs 

selected 

xQs++  g+, o,.,,+, 
( )!t~x'l+ (I+ 1)! (K+l)!(l+l)!  

where 

~K.t = mfaxltox (t)l, ~na = maxl¢ot (x~0,)l 
x~o ) • . 

I~ K÷t I 

1~1+1 ,I 
Ql+1 = maxl-,.-Tzi-~(t, t(o), X(o) ~I 

'.x~o~ lOt(o) [ 
I o~K+I+ 2 

DK+I, I+1 = max  ~ +  , 4(,,,,o, :(0)) t,x(o) I (o) 

(4.1) 

is being 

(4.2) 

Having specified the value of e0, one can numerically select numbers K and I such that Eq. (1.6) can 
be integrated to v~ithin the required accuracy. The mesh-sizes Ax(0)~ and At(t,) should be chosen so as to 
minimize the error estimate for the two-dimensional interpolation (4.1). The  interpolation points in 
that case should o~incide with the roots of a Chebyshev polynomial, i.e. to find upper bounds for the 
quantities cok(t) ard ¢0~x(0)) one can use the inequalities 

maxl(ox(t)l~< (t(x) --t(o)) K+I 
t 2 2K+I 

maxlt°t ( X,o~ )l ~< ( X!o)t _ X(o) o ) t+l (4.3) 
x~o~ " " 221+1 

Accordingly, in,,;tead of (4.2) we can use the estimate 

ix(t,X(o))_j(t,X(o))l~ (t(K)-t(o) )K+j QK+I -I (x(°)t-X(o)°)t+l Gt+j 
2 2K+I (K+I)! 2 2t+l (I+I)! 

_{. t(t¢ ) _ t(o))K+l (X(o)t _ X(O) o)t+t DK+t. t+l 
2 2x+l 22/+t (K+I)!(I+I)! ~<e° (4.4) 

which corresponds to selecting the interpolation points for t and x(0 ) via the formulae 

l[ 2k+l ] 
t(k)=2 (I(K)-t(o))C°S2K + 2 I¢ +t(x) +t o , k=O,K (4.5) 
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x(0)~ (x(0)t _x(0~))cos 2i+1 = ~+X(o)t+X(o)o , i=O,!  
2 I + 2  

Now, considering ~+1 and u,n+l as exact (optimal) and approximate (suboptimal) controls, respectively, 
we introduce a measure of the mismatch 

-- , ~ 2 , . . - , t  .flay of' 
t=f~ 

(4.6) 

where 

of' 
-~x =v ~(t M, y,n ) + ~ q(t)i(t, ym )dt (4.7) 

Taking (4.6) and (4.7) into consideration and using the triangle inequality, we can write 

Iffm+ I - u--m+ I I~ k 2 I~0(y m ,tin )l[v IX(l M '.~m ) -  ~¢(IM ,Ym )l+~q(t)Jx(t,y., ) -  ~(t,y., )ldt} (4.8) 

By (4.4) and (4.8), we have the inequality 

Ifi',,+j - u---m+ j I~ < k 2 qo[o ~0 + q(tM - tm )Eo ] = Ej (4.9) 

where  

~ = maxq(t) ,  ~) = m, yaxkp(y,t)l 

Hence, with el given, we can compute 

2 • 
~o =c~[k q~(. +~)1-~ (4.10) 

which in the final analysis de termines  the required accuracy o f  integrat ion for  Eq. (1.6) by the ISC 
method,  so as to guarantee  the construct ion of  a control  of  the necessary qnzlity. 

The  approach proposed  here  is also applicable to mult idimensional  systems with vector  controls,  but  
in that  case the compute r  must  have sufficient memory  capacity to  s tore data  arrays corresponding to 
the system of  differential  equat ions for  f ree  motion.  

5. E X A M P L E  

Let us consider the problem of regulating the angular velocities of a spaceship, on the basis of the example 
presented in [6]. For brevity, we shall assume that the state of the spaceship can be estimated to within satisfactory 
accuracy and that the separation theorem holds, so that the control problem is solvable in a determini.~-tic formulation 
[11. 

Suppose the motion of a space ship with a single axis of symmetry is described by the equations 

Yl + AY2y3 =ul, y'2-Ayly2 =u2, y~ =u 3, te[to,t M] (5.1) 

whereyl,y2 andy3 are the angular velocities (yj{t0) = yj, 0),A is the reduced moment of inertia, to = 0 [s], and tM 
= 10 [s]. Here and belowj = 1, 2, 3. 

It is required to determine a control that will steer object (5.1) up to time t = tu from the stateyj(to) = Y/,o to 
the statey:(tu), which is optimal in the sense that it minimizes the functional 

M(J) M(~.viiY2(tM)+1~.q#y2(t)dt u2 +u2i°° \ 
\ 1  J " 

(5.2) 

where 

V3(y) = Z~z/y](tM). Q(y,t)= Zq~oy2(t) 
] l 
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and v# and q# are giwm coefficients. 
The system of equations of free motion, applied to (5.1), is, by analogy with (1.6), 

J~l+AX2x3=O, Jc2-AXlx2=O, ,t3=O (5.3) 

Stipulating that the maximum admissible computation error in the controls is glj = 0.5 [%], we use (4.10) to 
evaluate the accura~: with which system (5.3) must be integrated by the ISC method 

EO.j = El,j (U 1/4- qjj )-I (5.4) 

By (5.4) we have ~o,I = 0.3 [%], ~ = 0.1 [%], go,3 = 0.1 [%]. We also specify the domain in which the initial 
data may vary as 

bl ~ Xl,o ~ dl, b2 ~< x2. 0 ~ d 2, />3. ~ x.~ 0 ~ d 3 (5.5) 

where 

b leO [c -!], d,=2,6[c -!], b 2 = - 2 [ c  -I] 

d 2=0 [c-l], ~=0 [c-l], d 3=1,4 [c -I] 

Putting t(o ) = to, tOO = IM and proceeding by analogy with (4.5), we select mesh-sizes LkCj,(O)i = Xj,(O)i --Xj,(O)/_ 1 and 
~l(k) = t(k) --/(k-l) SO that the interpolation points are the roots of a Chebyshev polynomial 

- 

Xj.(O)i = 2 - ' 2  cos it , i f 0 , 1  (5.6) 

ttk ) = t(lo +t(o) ttlo-t(O) c o /  2 k - I  ~ 
2 2 ~ 2K J' k=O,K ( 5 . 7 )  

In accordance with (4.4) and the values of ~j,  we choose K and I to ensure the required computation accuracy. 
The results of the computations imply I = 2, K = 3. Using (5.6) and (5.7) to compute the optimal interpolation 
points, we construct a family of 54 ISCs using a fourth-order Runge-Kutta method. Using these ISCs and (5.3), 
we ob n the val .es x'l, lk, , = = 0 

We have thus obtained an array of numbers x 1, (k)i (k = 0, 1, 2, 3; i = 0, 1, 2; p = 1, 2), which enables us, ,sing 
(2.7)-(2.9), to express the approximate solution of system (5.3) in the form 

M 3 I 2 , 
- ( ) _  (PJ xj(t.x(o),X ) -  ~q~_O ~p~Or~ Xj.(q)rL,<x/.(O)>Hqp< t) (5.8) 

a • ~ ,  J"/. 

. .  P 

Uh s- 2 YJ, £I  

(0 

• S -t,, 

Fig. 1. 
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In view of this formula, the expression for the required suboptimal control will be 

Uj.m+l=-k 2 VU£t(tM,y,n qll.rt(t,~m,X(M))dt (5.9) 

We have thus carried out the computational procedures relating to the stage of preliminary synthesis and an 
analytic expression has been obtained for the suboptimal control. Specifying the initial data Yl 0 = 2.5 [s-l]; Y2, 0 
= -1.7 [s-l];Y3,0 = 1.2 [s-l], ull = qtl = 0.9493; x.~z2 = q22 = 2.3; ~3 = q33 = 2.1; kj = 1, let us calculate a suboptimal 
control for Atm = 0.5 [s] and the corresponding phase trajectory of system (5.1). For a comparative analysis of the 
results, we also determined a control and trajectory for the same initial data, using the traditional algorithm with 
prognostic model. Analysis of the results showed that the relative error in computing the controls using the method 
proposed above was at most 10 -4 , owing to the closeness of the approximate solution (5.8) to the solution obtained 
numerically. 

Figure 1 shows graphs of the suboptimal control computed using (5.9) and the corresponding phase trajectory 
of the system (5.1). 

6. C O N C L U S I O N  

For any optimal control algorithm with a prognosis model based on difference stencils [1], the model 
must be "run" at each step for the construction and numerical differentiation of V(x, t) as a function 
of  x. The number  of  such "runs" in the simplest two-point scheme to compute the derivative for a 
multidimensional object is S + 1, where S is the dimension of the control vector [1]. In an r-point 
difference scheme the number  of  "r tms'"reaches ( r -  1)S + 1 [1], a figure that, in practice, may require 
enormous computational resources. 

The use of  the method developed in this paper  enables one to circumvent the need for multiple "runs" 
of  the kind described, since the solution of  the equation of free motion, and hence also the required 
controls, are found in analytic form, and their computation requires only the substitution into formula 
(33)  of  the initial data supplied to the control system at each step. 

Thus, the method is suitable for extensive use in problems of the analysis and synthesis of  suboptimal 
systems for controlling objects described by non-linear differential equa t ions- -a  fairly typical situation. 
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